Energy Preserving Schemes for Nonlinear Hamiltonian Systems of Wave Equations . Application to the Vibrating Piano String

نویسندگان

  • Patrick Joly
  • Juliette Chabassier
چکیده

The problem of the vibration of a string is well known in its linear form, describing the transversal motion of a string, nevertheless this description does not explain all the observations well enough. Nonlinear coupling between longitudinal and transversal modes seams to better model the piano string, as does for instance the “geometrically exact model” (GEM). This report introduces a general class of nonlinear systems, “nonlinear hamiltonian systems of wave equations”, in which fits the GEM. Mathematical study of these systems is lead in a first part, showing central properties (energy preservation, existence and unicity of a global smooth solution, finite propagation velocity . . . ). Space discretization is made in a classical way (variational formulation) and time discretization aims at numerical stability using an energy technique. A definition of “preserving schemes” is introduced, and we show that explicit schemes or partially implicit schemes which are preserving according to this definition cannot be built unless the model is linear. A general energy preserving second order accurate fully implicit scheme is built for any continuous system that fits the nonlinear hamiltonian systems of wave equations class. Key-words: preserving schemes, energy, non linear systems of wave equations, piano string ∗ EPI POEMS † [email protected][email protected] in ria -0 04 44 47 0, v er si on 1 6 Ja n 20 10 Schémas numériques préservant une énergie pour les systèmes hamiltoniens non linéaires d’équations d’ondes. Application à la corde de piano. Résumé : Le problème de vibration de corde est bien connu dans sa forme linéaire, où il décrit le mouvement transversal d’une corde. Cependant, cette description ne rend pas bien compte des observations. Un couplage non linéaire entre les modes transversal et longitudinal semble mieux adapté pour décrire la vibration d’une corde de piano, comme le fait par exemple le “modèle géométriquement exact” (MGE). Ce rapport introduit une classe générale de systèmes, les “systèmes hamiltoniens non linéaires d’équations d’ondes”, dans laquelle entre le MGE. Dans une première partie, une étude mathématique de ces systèmes est menée, où l’on montre quelques propriétés essentielles (conservation d’une énergie, existence et unicité d’une solution gobale régulière, vitesse de propagation finie . . . ). La discrétisation en espace suit une méthode classique (formulation variationnelle) et la discrétisation en temps est menée de telle façon à atteindre la stabilité numérique grâce à une technique d’énergie. On introduit une définition de “schéma conservatif” et l’on montre que des schémas explicites ou partiellement implicites ne peuvent être conservatifs selon cette définition que si le modèle est linéaire. Un schéma numérique général, préservant l’énergie, précis à l’ordre deux, entièrement implicite, est donné pour n’importe quel système continu appartenant à la classe des systèmes hamiltoniens non linéaires d’équations d’ondes. Mots-clés : schémas conservatifs, énergie, systèmes hamiltoniens non linéaires d’équations d’ondes, corde de piano in ria -0 04 44 47 0, v er si on 1 6 Ja n 20 10 Energy Preserving Schemes for Non Linear Hamiltonian Systems of Waves Equations 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The B"{a}cklund transformation method of Riccati equation to coupled Higgs field and Hamiltonian amplitude equations

In this paper, we establish new exact solutions for some complex nonlinear wave equations. The B"{a}cklund transformation method of Riccati equation is used to construct exact solutions of the Hamiltonian amplitude equation and the coupled Higgs field equation. This method presents a wide applicability to handling nonlinear wave equations. These equations play a very important role in mathemati...

متن کامل

Constraint Preserving Schemes for Some Gauge Invariant Wave Equations

We study discretizations of the Maxwell-Klein-Gordon equation as an example of a constrained geometric non-linear evolution partial differential equation. For the temporal gauge we propose a fully discrete scheme which preserves the non-linear constraint thanks to a special application of Lagrange multipliers. We show that the method generalizes to Hamiltonian wave equations whose kinetic and p...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Numerical methods for hyperbolic systems with singular coefficients: well-balanced scheme, Hamiltonian preservation, and beyond

This paper reviews some recent numerical methods for hyperbolic equations with singular (discontinuous or measure-valued) coefficients. Such problems arise in wave propagation through interfaces or barriers, or nonlinear waves through singular geometries. The connection between the well-balanced schemes for shallow-water equations with discontinuous bottom topography and the Hamiltonian preserv...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010